jhc-2019-jul-v-3-n-2-ultrasound-ahmed-nu

Ultrasound Guided Fine Needle Aspiration Cytology and Histopathology in the Diagnosis of Ovarian Mass

 *Ahmed NU,1 Saha NK,2 Bhowmik DK,3 Mazumder AR,4 Shariar S,5 Hira AD,6 Keya SA7

  1. *Dr. Nasir Uddin Ahmed, Assistant Professor, Department of Pathology, Faridpur Medical College. nasirdr32@yahoo.com
  2. Naba Kumar Saha, Professor, Department of Pathology, Sylhet MAG Osmani Medical College.
  3. Dilip Kumar Bhowmik, Professor, Department of Gynaecology & Obstetrics, Sylhet MAG Osmani Medical College.
  4. Ashikur Rahman Mazumder, Professor, Department of Radiology & Imaging, Sylhet MAG Osmani Medical College.
  5. Sakib Shariar, Pathologist, Railway General Hospital, Dhaka.
  6. Ananda Dyuti Hira, Pathologist, Department of Pathology, Khulna Medical College.
  7. Shamim Ara Keya, Lecturer, Department of Pathology, Shaheed Suhrawardy Medical College, Dhaka.

* For correspondence

 Abstract

Objective: The study was designed to evaluate the efficacy of ultrasound guided fine needle aspiration cytology in the diagnosis of ovarian mass and to correlate with histopathological diagnosis.
Methods: This  cross sectional study was done on 60 patients. FNA smears were prepared before surgical procedure. Histopathological examination was done by collection of surgical specimens. Cytomorphological findings were noted and correlated with histomorphological diagnoses.
Results: The age of patients ranged from 16 to 70 years with a mean of 36 years. Study showed 59 (98.33%) were unilateral and 1(1.67%) tumor was bilateral. Among 60 histopathologically diagnosed cases, 7(11.67%) were non-neoplastic cysts, 40 (66.67%) were benign tumors, 2(3.33%) were borderline tumors, 10(16.67%) were malignant tumors and 1 (1.66 %) was inflammatory lesion. All hemorrhagic cysts and cystic lesions were considered benign because they were cytologically negative for malignancy. Concordant diagnosis between cytology and histopathology was in 57 (95%) cases.
Conclusion: USG guided FNAC showed a relatively safe, quick, cost effective and patient compliant procedure with minimal morbidity.

[Journal of Histopathology and Cytopathology, 2019 Jul; 3 (2):117-124]

 Key words: Ultrasound Guidance, Fine Needle Aspiration Cytology, Histopathology, Ovarian Mass.

 Introduction

Tumors of the ovary are incredibly varied. This multiplicity is due to the presence of three cell types in the normal ovary: the multipotent surface (coelomic) epithelium, the totipotent germ cells, and the sex cord–stromal cells, each of which gives rise to a number of different tumors.1 The clinicopathological evaluation of ovarian masses is a challenging field. Difficulty in gaining access to the tumor site is itself a major obstacle and the wide spectrum of lesions present an enigmatic picture to the pathologist. Although histopathology remains the gold standard, in recent times image guided aspiration is being increasingly used as a rapid, inexpensive and efficient method for the pre-surgical diagnosis of ovarian masses as well as planning and evaluation of treatment.2 Historically, gynaecologists are hesitant to aspirate ovarian masses in view of the possibility of seeding of an early stage ovarian cancer. The magnitude of risk of such a procedure is unknown and not substantiated by convincing evidence. It is rather overestimated and has not been pathologically confirmed.3

 However, a lot of studies have clearly documented that risk of tumor spreading by needle tract is negligible in comparison to the potential benefits of this simple, quick and effective modality of diagnosis.4 With sonographic support, any structure visualized radiologically can usually be reached precisely in any desired plane, thus increasing the cytological yield. Nevertheless, as with any technique, image-guided FNAC has its short comings; false-negative results are usually due to failure of the needle to enter the mass and failure to sample representative areas.5 In the preoperative diagnosis of ovarian masses, acellular fluid should not be considered non-diagnostic, because it represents benign cysts in a majority of the cases. Literature search failed to trace any study to see the effectiveness of USG guided FNAC in comparison with histopathology in the diagnosis of ovarian masses in our country. With this background, the study was designed to evaluate the efficacy of ultrasound guided fine needle aspiration cytology in the diagnosis of ovarian mass and to correlate with histopathological diagnosis.

 Methods

The cross sectional study was carried out in the Department of Pathology, Sylhet MAG Osmani Medical College, Sylhet in collaboration with the Department of Obstetrics and Gynaecology and Department of Radiology and Imaging, Sylhet MAG Osmani Medical College Hospital, Sylhet from 1st July 2014 to 30th June 2015. All patients with ovarian masses attended the inpatient department of Obstetrics & Gynaecology were considered as the target population and those who fulfilled the inclusion and exclusion criteria were considered as study population. Patient of all ages with ovarian mass were included in this study and patients with hemorrhagic diathesis, those who refused to undergo  USG guided FNAC and surgery, diagnosed cases under treatment and ovarian mass with pregnancy were excluded from this study. Aspirations were done by expert radiologist in radiology and imaging department. The tumors were located by USG and needle was inserted into the lesion without negative pressure. The content of the needle was expelled on to a glass slide and then allowed the aspirated material to spread by gently pulling apart two slides in opposite direction. The smeared slides were promptly dropped in 95% ethyl alcohol for fixation and kept for at least 30 minutes. This smears were then stained according to Papanicolaou method. The cytopathological examination of the stained slides was carried out on the same day or following day. Surgical specimens were collected from all patients in whom USG guided FNAC were done. All the specimens were preserved in 10% formalin. Routine tissue processing with paraffin impregnation was done and stained with hematoxylin and eosin. The diagnoses of ovarian tumors were done according to the cytopathological and histopathological findings and then cytopathological diagnoses were compared with the histopathological diagnoses.

After meticulous checking, all the relevant collected data were compiled first on a master table. Then the data were organized by using scientific calculator and standard computer based statistical software SPSS-21. Percentages were calculated to find out the proportion of the findings. The results were presented in tables, graphs and diagrams. The efficacy of USG guided FNA cytology for the diagnosis of ovarian mass was determined by calculating sensitivity, specificity, positive predictive values, negative predictive values and accuracy.

 Results

Total 62 cases were selected considering inclusion and exclusion criteria. Tissue for histopathological examination was available in 60 cases for comparison with cytopathological diagnosis. The age of patients ranged from 16 to 70 years with a mean of 36 years. Highest frequency 18 (29.03%) was found in 21- 30 age group (Table-I).

Categorization of neoplastic ovarian masses according to cell of origin

 Of the 60 histopathologically diagnosed cases, benign, borderline and malignant tumors were 40, 2 and 10 respectively. Among the benign tumors, surface epithelial tumors, germ cell tumors and sex cord-stromal tumor were 30, 9 and 1 respectively. All the malignant and borderline tumors were surface epithelial in origin. Table II shows categorization of neoplastic ovarian masses according to cell of origin.

All the smears obtained from USG guided FNA of ovarian masses were satisfactory for cytological evaluation and cytological diagnosis was made in most of the smears. Among 62 cases, 31(50%) were diagnosed as benign tumors, 7 (11.29%) were borderline tumors, 4 (6.45%) were malignant tumors, 1(1.61%) was inflammatory lesion and 19 (30.65%) were benign cystic lesions. Cytopathological diagnoses of ovarian masses are shown in Table III.

 Histopathological diagnoses of ovarian masses

Among 60 histopathologically diagnosed cases, 7(11.67%) were non-neoplastic cysts, 40 (66.67%) were benign tumors, 2(3.33%) were borderline tumors,10(16.67%) were malignant tumors and 1 (1.66 %) was inflammatory lesion.  Histopathological diagnoses of ovarian masses are shown in Table IV.  

Histopathological examination of 60 ovarian masses was performed and comparison between cytological and histopathological diagnoses of ovarian masses is shown in Table V.

Discussion

In present study, age of the patients ranged from 16 to 70 years. The maximum number of cases 18 (29.03%) were seen in third decade which is  similar to the studies done by Sengupta et al & Agarwal et al.4,6 Ellenson and Pirog found maximum number of cases in  third & fourth decades.7  Among the 40 benign tumors, 39 (97.50%) cases were found unilateral and 1 (2.50%) case was bilateral. All the malignant, borderline and non-neoplastic lesions were found unilateral in this study. Ray S  reported that 76.56% of non-neoplastic lesions and benign tumors were unilateral and 23.44% were bilateral, 35.71% malignant tumors were unilateral and 64.29% malignant tumors were bilateral.8 This discrepancy is probably due to small sample size in the current study. On gross evaluation of the 60 ovarian masses, 46 (76.67%) were cystic, 2(3.33%) were solid and 12 (20%) were partly solid and partly cystic (mixed). Ray S  reported 64 benign tumors, of which 51(79.69%) were cystic, 7(10.94%) were solid and 6(9.37%) were mixed. Of the 14 malignant tumors, 2(14.28%) were cystic, 7(50%) were solid and 5(35.72%) were mixed in consistancy.8 These findings are  almost similar to the findings of this study. In the present study, among the 52 neoplastic ovarian masses, 42 (80.77%) were surface epithelial, 9 (17.30%) were germ cell and 1(1.93%) was sex- cord stromal origin. Out of 40 benign tumors, 30(75%) were surface epithelial, 9(22.5%) were germ cell and 1(2.5%) was sex- cord stromal origin. All borderline and malignant tumors were found surface epithelial in origin. Similar findings were found in study by Tushar, Asaranti and Mohapatra.9 They showed out of67 ovarian tumors, 53(79.10%) were surface epithelial, 11(16.41%) were germ cell, 1(1.50%) was sex-cord stromal origin and 2 (2.98%) cases were metastatic tumors. In the present study, out of 62 USG guided FNA of ovarian masses, 31(50%) were benign tumors, 7(11.29%) were borderline tumors, 4(6.45%) were malignant tumors, 1(1.61%) was inflammatory lesion and 19(30.65%) were benign cystic lesions.

Agarwal et al. reported 110 USG guided FNA diagnoses of ovarian masses. Out of 110 ovarian masses, 17 (15.50%) were non-neoplastic, 50 (45.5%) were benign and 43 (39%) were malignant tumors.6 In the present study, cytologically mucinous cystadenoma was the most common benign tumor accounting for 12 (19.35%) and mucinous cystadenocarcinoma was the most common malignant tumor accounting for 2(3.23%). Most of the internationally published journal shows, cytologically most common benign tumor is serous cystadenoma and most common malignant tumor is serous cystadenocarcinoma.3,5,6,10 The findings of present study differ from the findings of internationally published journal which may be due to small sample size. If large sample size was taken, the findings of our study might coincide with the findings of international journals. In histopathological diagnosis of 60 cases, 7(11.67%) were non-neoplastic cysts, 40 (66.67%) were benign tumors, 2(3.33%) were borderline tumors, 10(16.67%) were malignant tumors and 1 (1.66 %) was inflammatory lesion. Similar findings were found in study of 77 cases by Ray et al.3  Out of 77 cases, 43 (55.84%) were benign, 22 (28.57%) were malignant and 12 (15.59%) were non-neoplastic lesions. In the present study, histopathologically most common benign tumor was serous cystadenoma accounting for 16 (26.66%) and most common malignant tumor was mucinous cystadenocarcinoma accounting for 6(10%). Agarwal et al. reported that the most common benign tumor was serous cystadenoma accounting for 17 (24.63%) and most common malignant tumor was serous cystadenocarcinoma accounting 10 (14.50%).6 These findings are partially consistent with the current study. Among the 31 cytologically diagnosed benign tumors, 29 cases were diagnosed correctly in histopathology and 2 cases were diagnosed as malignant tumor. Cytologically diagnosed 4 malignant tumors were also diagnosed as malignant in histopathology. In cytologically diagnosed 7 borderline tumors, histopathologically 04 were malignant, 2 were borderline and 1 was benign tumor. One inflammatory lesion diagnosed correctly both in cytology and histopathology. All 17 benign cystic lesions diagnosed cytologically, were also benign in histopathology. Concordant diagnosis between cytology and histopathology was in 57 (95%) cases.

 Conclusion

USG guided FNAC is a relatively safe, quick, cost effective and patient compliant procedure with minimal morbidity and fair diagnostic accuracy. In the preoperative diagnosis of ovarian masses, acellular fluid should not be considered non-diagnostic, because it represents benign cysts in a majority of the cases. False negative results are due to paucicellularity and secondary degenerative changes of epithelial cells. Most of the hospitals in our country are not equiped with frozen section facilities.  USG guided FNAC has particular value as a preoperative diagnostic procedure where frozen section facilities are not available. USG guided FNAC in the diagnosis of ovarian masses can be practised in any centre where the help of sonologist and cytopathologist is available.

 References

  1. Sattar HA. Female Genital System and Breast. In: Kumar V, Abbas AK, and Aster JC, eds. Robbins Basic Pathology, 9th ed. Philadelphia, USA: Elsevier Saunders 2013: pp.681-714.
  2. Afzal S, Ansari H, Ansari M, Maheshwari V, Mehdi G. Image- guided fine-needle aspiration cytology of ovarian tumors: An assesment of diagnostic efficacy. Journal of Cytology 2010; 27(3): 91-95.
  3. Ray S, Gangopadhyay M, Bandyopadhyay A, Majumdar K, Chaudhury N. USG guided FNAC of ovarian mass lesions: A cyto-histopathological correlation, with emphasis on its role in pre-operative management guidelines. Journal of the Turkish German Gynecological Association 2014; 15: 6-12.
  4. Sengupta S, Mondal R, Bose K, Ray R, Jana S, Deoghoria D. Evaluation of role of ultra sound guided fine needle aspiration cytology for diagnosis of ovarian lesions with particular references to diagnostic pitfalls. Bangladesh Journal of Medical Science 2014; 13(2):158-162.
  5. Goel S, Agarwal D, Goel N, Naim M, Khan T, Ekrammulah. Ultrasound guided fine-needle aspiration cytology in ovarian neoplasms: An assesment of diagnostic accuracy and efficacy and role in clinical management. The Internet Journal of Pathology 2010; 11(2): 1-10.
  6. Agarwal N, Garg S, Aggarwal N, Santwani PM. Ovarian Neoplasm: Diagnostic accuracy of ultrasound guided fine needle aspiration cytology with histopathological correlation. IOSR Journal of Dental and Medical Sciences 2014; 13(7): 24-28.
  7. Ellenson LH, Pirog EC. The Female Genital Tract, In: Kumar V, Abbas AK, Fausto N, Aster, JC, eds. Robbins and Cotran Pathologic Basis of Disease, Philadelphia, USA: Elsevier Saunders 2010: pp.1039 -1052.
  8. Ray S. The role of imprint cytology in the diagnosis of ovarian lessions [ M. Phil thesis]. Sylhet MAG Osmani Medical College 2008,
  9. Tushar K, Asaranti K, Mohapatra PC. Intra-operative cytology of ovarian tumors. The Journal of Obstetrics and Gynaecology of India 2005; 55(4): 345-349.
  10. Khan N, Afroz N, Aqil B, Khan T, Ahmad I. Neoplastic and non-neoplastic ovarian masses: Diagnosis on cytology. Journal of Cytology 2009; 26(4):129-133.